Point of care ultrasound in acute settings – a narrative review

Authors

  • Ernest Olszewski Leicester Medical School, University of Leicester, Leicester UK
  • Oluwatosin Olusanya Department of Anaesthesia and Intensive Care Medicine, Glenfield Hospital, Leicester, UK
  • Segun Olusanya Department of Perioperative Medicine, Barts Heart Centre, London, UK https://orcid.org/0000-0001-9667-658X
  • Hakeem Yusuff Department of Respiratory Sciences, University of Leicester, Leicester, UK; and NIHR Leicester Biomedical Research Unit, Glenfield Hospital, Leicester, UK https://orcid.org/0000-0003-2553-0983

DOI:

https://doi.org/10.51496/jogm.v4.145

Keywords:

Ultrasonography, Shock, Critical care, Emergency medicine, Artificial intelligence

Abstract

Point of care ultrasound (POCUS) has become a standard assessment tool for the acute medical practitioner. Ultrasound has traditionally been the preserve of radiologists and cardiologists; however, the use by practitioners outside these specialties in the treatment of acutely ill patients began in the emergency department. Patients presenting with trauma or shock were assessed looking for life threatening injuries to inform immediate management.

Over the years and more recently during the COVID-19 pandemic, numerous POCUS protocols have been developed to standardise the practice of POCUS and to guide training. However, there are pitfalls to POCUS which include cross-contamination of infection, inter and intra-observer variability, bias, and retention of skills amongst practitioners.

The use of POCUS has increased in resource limited settings as ultrasound machines have become cheaper and more portable. However, challenges remain with considerable lack of trained healthcare staff and paucity of training opportunities. This has led to a considerable variability in the practice of POCUS in these settings.

Artificial intelligence (AI) is increasingly being leveraged as a medium to improve image acquisition, interpretation, and POCUS training. POCUS devices are also significantly smaller, cheaper, and more portable, increasing their availability to resource poor settings. There is potential for remote training platforms to improve access to learning opportunities in resource poor countries.

Metrics

Metrics Loading ...

References

Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med 2023; 364(8): 749–757. doi: 10.1056/nejmra0909487

Barjaktarevic I, Kenny JÉS, Berlin D, Cannesson, M. The evolution of ultrasound in critical care: from procedural guidance to hemodynamic monitor. J Ultrasound Med 2021; 40(2): 401–405. doi: 10.1002/jum.15403

Seif D, Perera P, Mailhot T, Riley D, Mandavia, D. Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol. Crit Care Res Pract 2012; 2012: 503254. doi: 10.1155/2012/503254

Winters B, Custer J, Galvagno SM, Colantuoni E, Kapoor SG, Lee HW, et al. Diagnostic errors in the intensive care unit: a systematic review of autopsy studies. BMJ Qual Saf 2012; 21(11): 894–902. doi: 10.1136/bmjqs-2012-000803

Lau YH, See KC. Point-of-care ultrasound for critically-ill patients: a mini-review of key diagnostic features and protocols. World J Crit Care Med 2022; 11(2): 70. doi: 10.5492/wjccm.v11.i2.70

García-Cruz E, Manzur-Sandoval D, Rascón-Sabido R, Gopar-Nieto R, Barajas-Campos RL, Jordán-Ríos A, et al. Critical care ultrasonography during COVID-19 pandemic: the ORACLE protocol. Echocardiography 2020; 37(9):1353–61. doi: 10.1111/echo.14837

Rozycki GS, Ochsner MG, Schmidt JA, Frankel HL, Davis TP, Wang D, et al. A prospective study of surgeon-performed ultrasound as the primary adjuvant modality for injured patient assessment. J Trauma 1995; 39(3): 492–500. doi: 10.1097/00005373-199509000-00016

Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol 2004; 21(9): 700–7. doi: 10.1017/S0265021504009068

Breitkreutz R, Price S, Steiger HV, Seeger FH, Ilper H, Ackermann H, et al. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation 2010; 81(11): 1527–33. doi: 10.1016/j.resuscitation.2010.07.013

Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: rapid ultrasound in SHock in the evaluation of the critically lll. Emerg Med Clin North Am 2010; 28(1): 29–56, 2010. doi: 10.1016/j.emc.2009.09.010

Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure*: the BLUE Protocol. Chest 2008; 134(1): 117–25. doi: 10.1378/chest.07-2800

Hernandez C, Shuler K, Hannan H, Sonyika C, Likourezos A, Marshall J. C.A.U.S.E.: cardiac arrest ultra-sound exam—A better approach to managing patients in primary non-arrhythmogenic cardiac arrest. Resuscitation 2008; 76(2): 198–206. doi: 10.1016/j.resuscitation.2007.06.033

Yin W, Li Y, Wang S, Zeng X, Qin Y, Wang X, et al. The PIEPEAR workflow: a critical care ultrasound based 7-step approach as a standard procedure to manage patients with acute cardiorespiratory compromise, with two example cases presented. Biomed Res Int 2018; 2018: 4687346. doi: 10.1155/2018/4687346

Johri AM, Galen B, Kirkpatrick JN, Lanspa M, Mulvagh S, Thamman R. ASE statement on Point-of-Care ultrasound during the 2019 novel coronavirus pandemic. J Am Soc Echocardiog 2020; 33(6): 670–3. doi: 10.1016/j.echo.2020.04.017

FUSIC Heart. Available from https://ics.ac.uk/product/heart.html. [cited 10 January 2024]

Vignon P, Chastagner C, Berkane V, Chardac V, François B, Normand S, et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med 2005; 33(8): 1757–63. doi: 10.1097/01.CCM.0000171532.02639.08

Peris A, Tutino L, Zagli G, Batacchi S, Cianchi G, Spina R, et al. The use of point-of-care bedside lung ultrasound significantly reduces the number of radiographs and computed tomography scans in critically ill patients. Anesth Analg 2010; 111(3): 687–92. doi: 10.1213/ANE.0b013e3181e7cc42

Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care 2014; 4: 1–12. doi: 10.1186/2110-5820-4-1

Bataille B, Riu B, Ferre F, Moussot PE, Mari A, Brunel E, et al. Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU. Chest 2014; 146(6): 1586–93. doi: 10.1378/chest.14-0681

Montoya J, Stawicki SP, Evans DC, Bahner DP, Sparks S, Sharpe RP, et al. From FAST to E-FAST: an overview of the evolution of ultrasound-based traumatic injury assessment. Eur J Trauma Emerg Surg 2016; 42: 119–26. doi: 10.1007/s00068-015-0512-1

Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel, R, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J 2020; 12: 16. doi: 10.1186/s13089-020-00163-w

Roguin A. Rene Theophile Hyacinthe Laënnec (1781–1826): the man behind the stethoscope. Clin Med Res 2006; 4(3): 230. doi: 10.3121/cmr.4.3.230

Savoia P, Jayanthi S, Chammas M. Focused Assessment with Sonography for Trauma (FAST). J Med Ultrasound 2023; 31(2): 101. doi: 10.4103/jmu.jmu_12_23

Sasmaz MI, Gungor F, Guven R, Akyol KC, Kozaci N, Kesapli M. Effect of focused bedside ultrasonography in hypotensive patients on the clinical decision of emergency physicians. Emerg Med Int 2017; 2017: 1–8. doi: 10.1155/2017/6248687

Atkinson P, Bowra J, Milne J, Lewis D, Lambert M, Jarman B. et al. International Federation for Emergency Medicine Consensus statement: sonography in hypotension and cardiac arrest (SHoC): an international consensus on the use of point of care ultrasound for undifferentiated hypotension and during cardiac arrest. CJEM 2017; 19(6): 459–70. doi: 10.1017/cem.2016.394

Advanced life support guidelines (2021).Available from https://www.resus.org.uk/library/2021-resuscitation-guidelines/adult-advanced-life-support-guidelines. [cited 10 January 2024]

Zieleskiewicz L, Lopez A, Hraiech S, Baumstarck K, Pastene B, Bisceglie MD, et al. Bedside POCUS during ward emergencies is associated with improved diagnosis and outcome: an observational, prospective, controlled study. Crit Care 2021; 25: 1–12. doi: 10.1186/s13054-021-03466-z

Ben-Baruch Golan Y, Sadeh R, Mizrakli Y, Shafat T, Sagy, I, Slutsky T. et al. Early Point-of-Care ultrasound assessment for medical patients reduces time to appropriate treatment: a pilot randomized controlled trial. Ultrasound Med Biol 2020; 46(8): 1908–15. doi: 10.1016/j.ultrasmedbio.2020.03.023

Atkinson PR, Milne J, Diegelmann L, Lamprecht H, Stander M, Lussier D. et al. Does Point-of-Care ultrasonography improve clinical outcomes in emergency department patients with undifferentiated hypotension? An international randomized controlled trial from the SHoC-ED investigators. Ann Emerg Med 2018; 72(4): 478–89. doi: 10.1016/j.annemergmed.2018.04.002

Buonsenso D, Pata D, Chiaretti A. COVID-19 outbreak: less stethoscope, more ultrasound. Lancet Respir Med 2020; 8(5): e27. doi: 10.1016/S2213-2600(20)30120-X

Volpicelli G, Gargani L, Perlini S, Spinelli S, Barbieri G, Lanotte A, et al. Lung ultrasound for the early diagnosis of COVID-19 pneumonia: an international multicenter study. Intensive Care Med 2021; 47(4):444–54. doi: 10.1007/s00134-021-06373-7

Lan Y, Liu W, Zhou Y. Right Ventricular Damage in COVID-19: association between myocardial injury and COVID-19. Front Cardiovasc Med 2021; 8: 606318. doi: 10.3389/fcvm.2021.606318

Hollenberg SM, Safi L, Parrillo JE, Fata M, Klinkhammer B, Gayed N, et al. Hemodynamic profiles of shock in patients with COVID-19. Am J Cardiol 2021; 153: 135–9. 10.1016/j.amjcard.2021.05.029

Ottolina D, Zazzeron L, Trevisi L, Agarossi A, Colombo R, Fossali T, et al. Acute kidney injury (AKI) in patients with Covid-19 infection is associated with ventilatory management with elevated positive end-expiratory pressure (PEEP). J Nephrol 2022: 35: 99–111. doi: 10.1007/s40620-021-01100-3

Pivetta E, Goffi A, Nazerian P, Castagno D, Tozzetti C, Tizzani M, et al. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomized controlled trial. Eur J Heart Fail 2019; 21(6): 754–66. doi: 10.1002/ejhf.1379

Kanji HD, McCallum J, Sirounis D, MacRedmond R, Moss R, Boyd JH. Limited echocardiography–guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care 2014; 29(5): 700–5. doi: 10.1016/j.jcrc.2014.04.008

Lee C, Balk D, Schafer J, Welwarth J, Hardin J, Yarza, et al. Accuracy of Focused Assessment with Sonography for Trauma (FAST) in disaster settings: a meta-analysis and systematic review. Disaster Med Public Health Prep 2019; 13(5–6): 1059–64. doi: 10.1017/dmp.2019.23

Qi X, Tian J, Sun R, Zhang H, Han J, Jin H, et al. Focused assessment with sonography in trauma for assessing the injury in the military settings: a meta-analysis. Balkan Med J 2019; 37: 3–8. doi: 10.4274/balkanmedj.galenos.2019.2019.8.79

Lin K-T, Lin Z-Y, Huang C-C, Yu S-Y, Lin J-H, Lin Y-R. Prehospital ultrasound scanning for abdominal free fluid detection in trauma patients: a systematic review and meta-analysis. BMC Emerg Med 2024; 24: 7. doi: 10.1186/s12873-023-00919-2

Muradali D, Gold WL, Phillips A, Wilson S. Can ultrasound probes and coupling gel be a source of nosocomial infection in patients undergoing sonography? An in vivo and in vitro study. AJR Am J Roentgenol 1995; 164: 1521–4. doi: 10.2214/ajr.164.6.7754907

Tesch C, Froschle G. Sonography machines as a source of infection. AJR Am J Roentgenol 1997; 168(2): 567–8. doi: 10.2214/ajr.168.2.9016251

Koibuchi H, Fujii Y, Kotani K, Konno K, Matsunaga, H, Miyamoto M, et al. Degradation of ultrasound probes caused by disinfection with alcohol. J Med Ultrason 2011; 38: 97–100. doi: 10.1007/s10396-010-0296-1

Pineau L, Radix C, Weber DJ. Comparison of the sporicidal activity of a UV disinfection process with three FDA cleared sterilants. Am J Infect Control 2022; 50: 1316–21. doi: 10.1016/j.ajic.2022.02.027

Recommendations for specialists practising ultra- sound independently of radiology departments Safety, governance and education. Available from https://www.rcr.ac.uk/news-policy/latest-updates/recommendations-for-specialists-practising-ultrasound-independently-of-radiology-departments-safety-governance-and-education/. [cited 13 November 2023]

Wang A, McCabe M, Gow-Lee E, James S, Austin B, Wailes D, et al. Evaluation of a survey for acute care programme directors on the utilisation of point-of-care ultrasound. Postgrad Med J 2022; 98(1163): 694–9. doi: 10.1136/postgradmedj-2021-140127

Kimura BJ, Sliman SM, Waalen J, Amundson SA, Shaw DJ. Retention of ultrasound skills and training in ‘Point-of-Care’ cardiac ultrasound. J Am Soc Echocardiogr 2016; 29: 992–7. doi: 10.1016/j.echo.2016.05.013

Schott CK, LoPresti CM, Boyd JS, Core M, Haro EK, Mader MJ, et al. Retention of Point-of-Care ultrasound skills among practicing physicians: findings of the VA National POCUS training program. Am J Med 2021; 134(3): 391–9. doi: 10.1016/j.amjmed.2020.08.008

Certificate in Clinician Performed Ultrasound. Available from https://www.asum.com.au/education/ccpu-course/. [cited 15 December 2023]

Future use of new imaging technologies in developing countries. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser 1985; 723: 1–67.

Abrokwa SK, Ruby LC, Heuvelings CC, Bélard S. Task shifting for point of care ultrasound in primary healthcare in low- and middle-income countries-a systematic review. EClinical Medicine 2022; 45: 101333. doi: 10.1016/j.eclinm.2022.101333

Task shifting global recommendations and guidelines HIV/AIDS. Geneva: World Health Organisation (WHO) Press; 2008.

Sidi M, Sani GM, Ya’u A, Zira JD, Loshugno SS, Luntsi G. The current status of ultrasound practice in Kano metropolis, Nigeria. Egypt J Radiol Nucl Med 2021; 52: 1–8, 2021. doi: 10.1186/s43055-021-00509-x

Pisani L, De Nicolo A, Schiavone M, Adeniji AO, Palma AD, Gennaro FD, et al. Lung ultrasound for detection of pulmonary complications in critically ill obstetric patients in a resource-limited setting. Am J Trop Med Hyg 2020; 104(2): 478–86. doi: 10.4269/ajtmh.20-0996

Tran TT, Hlaing M, Krause M. Point-of-Care ultrasound: applications in low- and middle-income countries. Curr Anesthesiol Rep 2021; 11: 69–75. doi: 10.1007/s40140-020-00429-y

Younis SN. The role of abdominal ultrasound in the diagnosis of typhoid fever: an observational study. Travel Med Infect Dis 2014; 12: 179–82. doi: 10.1016/j.tmaid.2013.09.004

Chalya PL, Mabula JB, Koy M, Kataraihya JB, Jaka H, MshanaSE, et al. Typhoid intestinal perforations at a University teaching hospital in Northwestern Tanzania: a surgical experience of 104 cases in a resource-limited setting. World J Emerg Surg 2012; 7: 4. doi: 10.1186/1749-7922-7-4

Murphy S, Cserti-Gazdewich C, Dhabangi A, Musoke C, Nabukeera-Barungi N, Price D, et al. Ultrasound findings in Plasmodium falciparum malaria: a pilot study. Pediatr Crit Care Med 2011; 12(2): e58–63. doi: 10.1097/PCC.0b013e3181e89992

Del Carpio M, Mercapide CH, Salvitti JC, Uchiumi L, Sustercic, J, Panomarenko H, et al. Early diagnosis, treatment and follow-up of cystic echinococcosis in remote rural areas in Patagonia: impact of ultrasound training of non-specialists. PLoS Negl Trop Dis 2012; 6(1): e1444. doi: 10.1371/journal.pntd.0001444

Heller T, Wallrauch C, Goblirsch S, Brunetti E. Focused assessment with sonography for HIV-associated tuberculosis (FASH): a short protocol and a pictorial review. Crit Ultrasound J 2012; 4: 21. doi: 10.1186/2036-7902-4-21

Orlowski HLP, McWilliams S, Mellnick VM, Bhalla S, Lubner MG, Pickhardt PJ, et al. Imaging spectrum of invasive fungal and fungal-like infections. Radiographics 2017; 37(4): 1119–34. doi: 10.1148/rg.2017160110

Giordani MT, Tamarozzi F, Kaminstein D, Brunetti E, Heller T. Point-of-care lung ultrasound for diagnosis of Pneumocystis jirovecii pneumonia: notes from the field. Crit Ultrasound J 2018; 10: 8. doi: 10.1186/s13089-018-0089-0

Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging 2020; 68: A1–4. doi: 10.1016/j.mri.2019.12.006

Liu P, Lu L, Zhang J, Huo T, Liu S, Ye Z. Application of artificial intelligence in medicine: an overview. Curr Med Sci 2012; 41: 1105–15. doi: 10.1007/s11596-021-2474-3

Sonko ML, Arnold TC, Kuznetsov IA. Machine learning in Point of Care ultrasound. POCUS J 2022; 7: 78–87. doi: 10.24908/pocus.v7iKidney.15345

Gohar E, Herling A, Mazuz M, Tsaban G, Gat T, Kobal S, et al. Artificial Intelligence (AI) versus POCUS expert: a validation study of three automatic AI-based, real-time, hemodynamic echocardiographic assessment tools. J Clin Med 2023; 12(4): 1352. doi: 10.3390/jcm12041352

Baloescu C, Toporek G, Kim S, McNamara K, Liu R, Shaw MM, et al. Automated lung ultrasound B-line assessment using a deep learning algorithm. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67(11): 2312–20. doi: 10.1109/TUFFC.2020.3002249

Correa M, Zimic M, Barrientos F, Barrientos R, Román-Gonzalez A, Pajuelo MJ, et al. Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition. PLoS One 2018; 13(12): e0206410. doi: 10.1371/journal.pone.0206410

Jang J, Park Y, Kim B, Lee SM, Kwon J-Y, Seo JK, et al. Automatic estimation of fetal abdominal circumference from ultrasound images. IEEE J Biomed Health Inform 2018; 22(5): 1512–20. doi: 10.1109/JBHI.2017.2776116

Nafee T, Gibson CM, Travis R, Yee MK, Kerneis M, Chi G, et al. Machine learning to predict venous thrombosis in acutely ill medical patients. Res Pract Thromb Haemost 2020; 4(2): 230–7. doi: 10.1002/rth2.12292

Ravishankar H, Annangi P, Washburn M, Lanning J. Automated kidney morphology measurements from ultrasound images using texture and edge analysis. InMedical Imaging 2016: Ultrasonic Imaging and Tomography 2016 Apr 1 (Vol. 9790, pp. 359–365).

Wang H, Uraco AM, Hughes J. Artificial intelligence application on Point-of-Care ultrasound. J Cardiothorac Vasc Anesth 2021; 35(11): 3451–2. doi: 10.1053/j.jvca.2021.02.064

Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, et al. Artificial intelligence: a powerful paradigm for scientific research. The Innovation 2021; 2(4): 100179. doi: 10.1016/j.xinn.2021.100179

Nti B, Lehmann AS, Haddad A, et al: Artificial intelligence-augmented pediatric lung POCUS: a pilot study of novice learners. J Ultrasound Med 2022; 41(12): 2965–72. doi: 10.1002/jum.15992

Cheikh A Ben, Gorincour G, Nivet H, May J, Seux M, Calame P, et al. How artificial intelligence improves radiological interpretation in suspected pulmonary embolism. Eur Radiol 2022; 32(9): 5831–42. doi: 10.1007/s00330-022-08645-2

van de Venter R, Skelton E, Matthew J, Woznitza N, Tarroni G, Hirani SP, et al. Artificial intelligence education for radiographers, an evaluation of a UK postgraduate educational intervention using participatory action research: a pilot study. Insights Imaging 2023; 14: 25. doi: 10.1186/s13244-023-01372-2

de Margerie-Mellon C. Leveraging artificial intelligence in radiology education: challenges and opportunities. Eur Radiol 2023; 33: 8239–40. https://doi.org/10.1007/s00330-023-10112-5

Lee J, Wu AS, Li D, Kulasegaram K. Artificial intelligence in undergraduate medical education: a scoping review. Acad Med 2021; 96(11s): S62–70. doi: 10.1097/ACM.0000000000004291

Kundu S. How will artificial intelligence change medical training? Commun Med 2021; 1: 8. doi: 10.1038/s43856-021-00003-5

Lee L, DeCara JM. Point-of-Care ultrasound. Curr Cardiol Rep 2020; 22: 149. doi: 10.1007/s11886-020-01394-y

Bukhman AK, Nsengimana VJP, Lipsitz MC, Henwood PC, Tefera E, Rouhani SA, et al. Diagnosis and management of acute heart failure in Sub-Saharan Africa. Curr Cardiol Rep 2019; 21: 120. doi: 10.1007/s11886-019-1200-2

Bitker L, Talmor D, Richard J-C. Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48: 995–1008. doi: 10.1007/s00134-022-06809-8

Ramanujam V, Tian L, Chow C, Kendall MC. Three-Dimensional Imaging of Commonly Performed Peripheral Blocks: Using a Handheld Point-of-Care Ultrasound System. Anesth Pain Med. 2023;13(2):e134797.

Ibrahim A, Zhang S, Angiolini F, Arditi M, Kimura S, Goto S, et al. Towards ultrasound everywhere: a portable 3D digital back-end capable of zone and compound imaging. IEEE Trans Biomed Circuits Syst 2018; 12(5): 968–81. doi: 10.1109/TBCAS.2018.2828382

Baribeau Y, Sharkey A, Chaudhary O, Krumm S, Fatima H, Mahmood F, et al. Handheld Point-of-Care ultrasound probes: the new generation of POCUS. J Cardiothorac Vasc Anesth 2020; 34(11): 3139–45. doi: 10.1053/j.jvca.2020.07.004

Carrera KG, Hassen G, Camacho-Leon GP, Rossitto F, Martinez F, Debele TK. The benefits and barriers of using Point-of-Care ultrasound in primary healthcare in the United States. Cureus 2022; 14(8): e28373. doi: 10.7759/cureus.28373

Lam J, Wong S, Grubic N, Nihal S, Herr JE, Belliveau DJ, et al. Accelerated Remote Consultation Tele-POCUS in Cardiopulmonary Assessment (ARCTICA). POCUS J 2020; 5(2): 55–8. doi: 10.24908/pocus.v5i2.14452

Evangelista A, Galuppo V, Méndez J, Evangelista L, Arpal L, Rubio C, et al. Hand-held cardiac ultrasound screening performed by family doctors with remote expert support interpretation. Heart 2016; 102(5): 376–82. doi: 10.1136/heartjnl-2015-308421

Jensen SH, Weile J, Aagaard R, Hansen KM, Jensen TB, Petersen MC, et al. Remote real-time supervision via tele-ultrasound in focused cardiac ultrasound: A single-blinded cluster randomized controlled trial. Acta Anaesthesiol Scand 2019; 63(3): 403–9. doi: 10.1111/aas.13276

Gilbertson EA, Hatton ND, Ryan JJ. Point of care ultrasound: the next evolution of medical education. Ann Transl Med 2020; 8(14): 846. doi: 10.21037/atm.2020.04.41

Published

20-03-2024

How to Cite

Olszewski, E., Olusanya, O., Olusanya, S., & Yusuff, H. (2024). Point of care ultrasound in acute settings – a narrative review. Journal of Global Medicine, 4(1), e145. https://doi.org/10.51496/jogm.v4.145